
 1

PSCSTA Programming Contest

Dec 2015 - Advanced Division

DO NOT OPEN THIS PACKET UNTIL INSTRUCTED TO DO SO

General Notes

1. Do the problems in any order you like.

2. All problems have a value of 60 points. Incorrect submissions may be reworked and

resubmitted, but will receive a deduction of 5 points for each incorrect submission.

Deductions are only included in the team score for problems that are ultimately solved

correctly.

3. There is no extraneous input. All input is exactly as specified in the problem. Unless

specified by the problem, integer inputs will not have leading zeros. Unless otherwise

specified, your program should read to the end of file.

4. Your program should not print extraneous output. Follow the form exactly as given in the

problem.

5. Your program should work for all expected input cases, as specified in the problem. Sample

test cases may be simple. Judge test cases could be more involved.

Name

1 Times Tables

2 Key Probability

3 The Way Back Home

4 Joe’s Agenda

5 Shopping List

6 Voltage and Power

7 Flipping Lights

8 Gates

9 Pay in Cash

10 Customer Scheduling

11 Wunderground

12 Fixing Appliances

13 DandD2

Good luck!

 2

1. Times Tables

Input File: tables.dat

Don’t like to memorize the times tables? Let’s write a program to generate it whenever we need

it!

Input

First line will contain an integer N, which represents the number of requests below. Subsequent

N lines have the integers Ti whose tables should be generated and output

Constraints
1<=N<=10

1<=Ti<=1000

Output
Output the requested tables from times 1 to times 10, for each requested table. There should be N

such tables, each separated by a blank line

Example Input File
2

2

5

Output to Screen
2 X 1 = 2

2 X 2 = 4

2 X 3 = 6

2 X 4 = 8

2 X 5 = 10

2 X 6 = 12

2 X 7 = 14

2 X 8 = 16

2 X 9 = 18

2 X 10 = 20

5 X 1 = 5

5 X 2 = 10

5 X 3 = 15

5 X 4 = 20

5 X 5 = 25

5 X 6 = 30

5 X 7 = 35

5 X 8 = 40

5 X 9 = 45

5 X 10 = 50

2 X 10 = 20

 3

2. Key Probability

Input File: keys.dat

After a long and tiring day of work, Joe arrives home. The sky is dark and all is quiet around him. The darkness and

fatigue from his hard work has left Joe unable to make out much detail from anything. Joe pulls out his key ring, and

thinks to himself “maybe if I just put a random key in my door, I’ll get lucky and it’ll be the right one”. Joe is very

tired. All Joe wants to know is what his odds of picking the correct key on the first try are.

Input

The first line will contain a single integer n that indicates the number of data sets that follow.

Each data set will consist of a single integer x denoting how many keys Joe has on his key ring.

Output

Output the likeliness of Joe picking the correct key on the first try, rounded to two decimal

places (do not truncate) followed by a percent sign.

Example Input File
3

1

2

8

Example Output to Screen
100.00%

50.00%

12.50%

 4

3. The Way Back Home

Input File: home.dat

Joe’s day is finally done, and he can now head back home to relax. The only problem is, he doesn’t exactly know

how to get home from his last job. Joe doesn’t trust GPS, so it is your job to write a program to help him get back

home. Luckily he remembers the order of turns he made from when he left home. Help Joe find his way home,

exactly the way he came.

Input

The first line will contain a single integer n that indicates the number of data sets that follow.

Each data set will start with a single integer x denoting how many turns Joe made. The next line

will consist of x Strings of either “left” or “right”.

Output

Output which ways to turn to get Joe home.

Example Input File
2

10

left right left right left left left right right left

4

left left left right

Example Output to Screen
right left left right right right left right left right

left right right right

 5

4. Joe’s Agenda

Input File: agenda.dat

Joe’s schedule today is totally booked. On days like this, he likes to know exactly what time he’ll

be finished. Assuming that Joe will either be working or driving nonstop throughout his

workday, use his schedule to predict when he will finally arrive home from his workday.

Input

The first line will contain a single integer n (0 < n <= 10) that indicates the number of data sets

that follow. Each data set will start with an integer s (0 < s <= 100) followed by a time in the

format HH:MM AM/PM, representing the speed of Joe’s car in miles per hour, and the time Joe

begins the first item on his to do list. An unknown number of items will follow. The following

lines will each contain one item of Joe’s to do list, formatted by the items name, followed by

either a distance in miles or a time in minutes, separated from the name by a comma. The time it

takes to complete that item will either be the time it takes for Joe’s car to travel the provided

distance, or the time listed. Each case is terminated by the “GO HOME” item.

Output

Output the time Joe will arrive home to the nearest minute (rounded) in the following format:

"Joe will arrive home at HH:MM AM/PM".

Example Input File
2

10 07:00 AM

GO TO JOB 1, 20 MILES

DO JOB 1, 30 MINUTES

GO TO JOB 2, 40 MILES

DO JOB 2, 45 MINUTES

GO HOME, 10 MILES

50 05:00 PM

GO TO STORE, 25 MILES

SHOP, 15 MINUTES

GO HOME, 25 MILES

Example Output to Screen
Joe will arrive home at 03:15 PM

Joe will arrive home at 06:15 PM

 6

5. Shopping List

Input File: list.dat

Being the fantastic electrician that he is, Joe volunteers to provide his own supplies for whatever

jobs he performs. With all of his job opportunities he often runs out of supplies though. Joe is

making a trip to the store, and has enlisted you to write a program to calculate how much money

he will spend.

Input

The first line will contain a single integer n (0 < n <= 10) that indicates the number of

data sets that follow. Each data set will start with two integers n (0 < n <= 100)and m(0

< m <= 100), n being how many items the store sells, m being how many items are on Joe’s

list. The following n lines will each contain an item name, item quantity per package, and cost

per package (dollar and cents precision), all separated by commas. The next m lines each contain

an item on Joe’s grocery list, followed by the quantity he needs, separated by a comma. It is also

worth noting that Joe will sometimes have to buy extra, as the package size may not divide

evenly into the quantity needed. You can assume that the store will always have all the items Joe

needs and in enough quantities. The tax rate on all of Joe’s purchases is 6.25%

Output

Output the cost of Joe’s shopping trip in the format:

“Joe’s trip to the store costs him ” followed by the cost of his trip rounded to

the nearest cent (do not truncate).

Example Input File
1

6 5

Light Bulbs, 6, 1.50

Screws, 50, 2.00

Screwdriver, 1, 5.00

Hammer, 1, 6.00

Nails, 50, 2.50

Wrenches, 16, 40.00

Light Bulbs, 15

Screwdriver, 1

Nails, 250

Wrenches, 17

Hammer, 1

Example Output to Screen

Joe’s trip to the store costs him $114.75

 7

6. Voltage and Power

Input File: voltage.dat

Being the stellar electrician he is, Joe happens to have a firm grasp on the concepts of current,

voltage, resistance, and power. He knows the following two equations by heart:

V = IR P = IV

V, I, R, and P denoting voltage, current, resistance, and power respectively. Joe finds doing the

math in solving for these variables repetitive though, and has enlisted you to help write a

program to do it for him

Input

The first line will contain a single integer n (0 < n <= 100) that indicates the number of data sets

that follow. Each data set will contain two lines. Each line will give you the value of either V, I,

R, or, P. The values of V, I, R, or, P may have up to one decimal place (X.X)

Output

Find the values of V, I, R, and P, and print them in the format:

“V = X.XXX, I = X.XXX, R = X.XXX, P = X.XXX”, all rounded to three decimal

places (do not truncate).

Example Input File
3

V = 5

I = 10

P = 5

V = 2.5

I = 5

R = 5

Example Output to Screen
V = 5.000, I = 10.000, R = 0.500, P = 50.000

V = 2.500, I = 2.000, R = 1.250, P = 5.000

V = 25.000, I = 5.000, R = 5.000, P = 125.000

 8

7. Flipping Lights

Input File: lights.dat

Joe is working a job where he has to test a lot of light switches. Given an initial position of a row

of light bulbs and instructions on how to flip the switches, help show Joe how the row should

look after he’s done.

Input

The first line will contain a single integer n (0 < n <= 10) that indicates the number of data sets

that follow. Each data set will start with a string representing the row of light bulbs, 1 being on

and 0 off, and a single integer m (0 < m <= 100) representing the number of actions to be

performed on the row of lights. There are 6 possible actions:

 FLIP A B – flips all of the lights to their inverse starting from A to B exclusive (B

not included)

 FLIP ALL – flips all of the lights to their inverse

 ON A B – turns on all lights starting from A to B exclusive (B not included)

 ON ALL – turns on all lights

 OFF A B – turns off all lights from A to B exclusive (B not included)

 OFF ALL – turns off all lights

Note that A and B are 0-based indices i.e., 0 representing 1st light bulb, 1 representing 2nd light

bulb and so on.

Output

Output what the string of lights should look like after all of the actions have been performed.

Example Input File
2

1010101010 4

FLIP ALL

ON 0 2

ON 8 10

OFF 4 6

000000 2

ON 0 3

FLIP ALL

Example Output to Screen
1101000111

000111

 9

8. Gates

Input File: gates.dat

Logic gates are important in the world of Electrical/Computer Engineering. Joe has been

studying up on his logical operators, drawing diagrams and truth tables and whatnot. Write a

program to generate a truth table for a given Boolean statement so Joe can check his work.

Below is an example truth table for few basic sample operations

A B A | B A & B A ^ B !A

FALSE FALSE FALSE FALSE FALSE TRUE

FALSE TRUE TRUE FALSE TRUE TRUE

TRUE FALSE TRUE FALSE TRUE FALSE

TRUE TRUE TRUE TRUE FALSE FALSE

Note that ‘!’ operator has highest precedence and associates with the variable on immediate

right. All other operators have lower precendence than ‘!’ and have left to right associativity.

Example: Boolean expression A&!B

A B A&!B

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE TRUE

TRUE TRUE FALSE

Input

The first line will contain a single integer n that indicates the number of data sets that follow.

Each data set will start with a single integer x denoting how many variables are in the following

statement, followed by a Boolean expression consisting of !, &, |, ^, which represent NOT, AND,

OR, XOR operations, and letters A-G. A letter will not appear in the string unless the letter

preceding it has already occurred in the string as well. For example, there will be no test case

B&D, as B occurs without an A, and there will be no test case B&A, as A did not precede B.

Follow order of operations. There will be no parentheses.

Additional info on how the Boolean operations work:

“AND”: The output of an AND operation is TRUE if both of its inputs are TRUE. Its output is

FALSE if either of its inputs is FALSE

“OR”: The output of an OR operation is TRUE if either of its inputs is TRUE. Its output is

FALSE if both of its inputs are FALSE

“XOR”: The output of an XOR operation is TRUE if either of its inputs is TRUE. Its output is

FALSE if i)both of its inputs are TRUE or ii) both of its inputs are FALSE.

(Continued on next page…)

 10

(Problem 8 continued)

Output

Output the truth table for the given Boolean expression. The first column of the truth table

should represent A, the second B, the third C, and so on. The last column should represent the

result of the Boolean expression. The truth table must be in binary order. For example in the first

test case, if you were to replace the Boolean values of A,B, and C with 1’s for true and 0’s for

false, the Boolean combination with the smallest binary representation would have to come first.

Columns must also be properly aligned with width of 6.

Example Input File
2

3 A&B^C

2 A|B

Example Output to Screen
FALSE FALSE FALSE FALSE

FALSE FALSE TRUE TRUE

FALSE TRUE FALSE FALSE

FALSE TRUE TRUE TRUE

TRUE FALSE FALSE FALSE

TRUE FALSE TRUE TRUE

TRUE TRUE FALSE TRUE

TRUE TRUE TRUE FALSE

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

 11

9. Pay in Cash

Input File: cash.dat

After a tough job, Joe asks his customer for payment. Joe doesn’t like credit, debit, or check. Joe

likes cold, hard, cash. The problem is, whenever Joe gives his customers their fee, customers will

spend entirely too long sorting through their money attempting to pay in exact change. Help Joe

by writing a program to see if it is possible for his customers to pay him the exact change.

Input

The first line will contain a single integer N that indicates the number of data sets that follow.

Each data set will start with two space separated integers, X denoting the number of coins in the

customer’s hand, and Y denoting the amount of change the customer is still trying to make. The

next line will consist of X integers, representing each coin in the customers hand.

Clarification:

Coins could be of any positive integer value <= 100

Output

Depending on whether or not it is possible for the customer to make change of Y cents, output

either “Y is possible” or “Y is not possible”

Constraints
1<=N<=10
1<=X<=30

Example Input File
2

10 99

25 25 25 10 10 10 5 5 1 1

10 99

25 25 10 25 10 10 1 1 1 1

Example Output to Screen
99 is not possible

99 is possible

 12

10. Customer Scheduling

Input File: schedule.dat

Everyday, Joe has a list of jobs that he has been offered. Being the great electrician that he is, Joe

is often overbooked, and is forced to choose which jobs to take in order to maximize the amount

of jobs he can do in a day. Joe has enlisted you to create a computer program to help him with

this process.

Input

The first line will contain a single integer n (0 < n <= 10) that indicates the number of data sets

that follow. Each data set will start with a single integer x (0 < x <= 100) denoting how many

jobs Joe has been offered. The following X lines will contain a start and end time formatted

HH:MM AM/PM. Joe will not accept a job beginning before 03:00 AM or after 09:00 PM.

Output

Output the maximum number of jobs that Joe can accept that day without any times overlapping.

If one event starts at the same time as another ends, the two events are not considered

overlapping.

Example Input File
1

7

01:30 AM 02:00 AM

06:30 AM 07:00 PM

06:45 AM 08:30 AM

07:30 AM 09:00 AM

08:45 AM 09:15 AM

09:07 AM 01:00 PM

09:20 AM 01:00 PM

Example Output to Screen
3

 13

11. Wunderground

Input File: wunderground.dat

wunderground.com is one of the weather sites I check daily for the forecast and weather data.

Wunderground has a feature to look up old data for rainfall amounts, temperatures, etc. You can

download the data as a text file. The text file is comma delimited. Your job is to write code to

interpret this data file and select the data requested by a user.

Given 2 weeks of weather data (14 days) of 23 categories, find the data for that category. The 14

pieces of data could be used to find an average (mean), a total (sum), the minimum, the

maximum, or a range (max-min), depending on the category. The following keywords will

indicate which type of analysis is requested:

 max

 min

 total

 mean

 range

For this program, ignore the “Events” column (index 21 or 22nd column) because it is either

empty or “Rain-Thunderstorm.” Display all values to the nearest hundredth.

Input: The first line consists of a list of weather data categories separated by commas. The next

14 lines contains the alphanumerical (String, int, double) data for each category, separated by

commas. The 16th line contains the number of data sets (N). Each data set will consist of a

weather category (S) and the type of data analysis requested (T).

Output: For each data set, print out the following format on one line:
S T VAL

where VAL is requested result, rounded to the nearest hundredth (do not truncate).

Constraints:

1<=N<=10

(Continued on next page…)

 14

(Problem 11 continued)

(Note: alternating lines are bolded to show that there are 20 lines in the actual sample data

file shown below. The first line in the data is long.)

Example Input file:

CDT,Max TemperatureF,Mean TemperatureF,Min TemperatureF,Max Dew PointF,MeanDew PointF,Min

DewpointF,Max Humidity,Mean Humidity,Min Humidity,Max Sea Level PressureIn,Mean Sea Level

PressureIn,Min Sea Level PressureIn,Max VisibilityMiles,Mean VisibilityMiles,Min VisibilityMiles,

Max Wind SpeedMPH,Mean Wind SpeedMPH,Max Gust SpeedMPH,PrecipitationIn,CloudCover,Events,

WindDirDegrees

2015-4-1,90,72,55,55,44,27,84,46,12,29.88,29.74,29.60,10,10,10,23,10,34,0.00,0,,190

2015-4-2,85,70,54,52,38,26,63,37,12,29.89,29.76,29.65,10,10,7,20,10,25,0.00,0,,348

2015-4-3,61,49,35,52,32,19,77,51,27,30.40,30.20,29.72,10,10,7,28,15,38,0.00,4,,13

2015-4-4,67,48,28,28,19,8,81,40,11,30.42,30.28,30.06,10,10,10,20,6,28,0.00,0,,185

2015-4-5,81,65,50,56,40,23,88,43,25,30.05,29.84,29.69,10,10,10,28,14,38,0.00,1,,193

2015-4-6,90,72,54,58,35,6,95,45,4,29.79,29.74,29.69,10,10,7,29,16,36,0.00,1,,227

2015-4-7,90,71,52,35,23,9,49,22,5,29.88,29.81,29.74,10,10,10,18,6,23,0.00,0,,237

2015-4-8,92,72,52,63,40,24,78,35,12,29.82,29.69,29.53,10,10,10,34,8,45,0.00,0,,219

2015-4-9,71,58,46,60,40,32,82,51,24,30.20,29.90,29.61,10,10,10,25,18,37,0.00,0,,334

2015-4-10,71,50,29,38,31,27,94,53,22,30.28,30.17,30.04,10,10,10,15,6,21,0.00,0,,157

2015-4-11,67,58,50,59,49,38,94,74,54,30.16,30.01,29.84,10,10,7,24,11,34,0.12,5,Rain-

Thunderstorm,144

2015-4-12,84,73,62,62,57,43,94,69,25,29.89,29.80,29.70,10,10,7,23,14,32,0.00,4,Rain-

Thunderstorm,190

2015-4-13,66,58,50,61,43,26,96,62,22,30.26,30.11,29.88,10,10,7,26,12,36,0.15,4,Rain-

Thunderstorm,62

2015-4-14,69,54,39,50,39,31,94,59,29,30.26,30.14,30.00,10,10,1,15,3,22,0.00,0,,106

4

Max TemperatureF max

Max TemperatureF range

Max TemperatureF mean

PrecipitationIn total

Example Output to Screen
Max TemperatureF max 92.00

Max TemperatureF range 31.00

Max TemperatureF mean 77.43

PrecipitationIn total 0.27

 15

12. Fixing Appliances

Input File: fixing.dat

Joe has been hired to fix a microwave, washer, dryer, and air conditioning, all in one job. He is in

a rush however, and is wondering what would be the fastest way to finish all of these jobs as to

get going. Write a program to help Joe solve his problem.

Input

The first line will contain a single integer n that indicates the number of data sets that follow.

Each data set will start with a single integer x denoting the size of the floorplan of each house.

The next x lines will represent the floorplan of the house, J being Joe’s starting position, M being

the microwave, W being the Washer, D being the Dryer, A being the Air Conditioning, # being a

wall that obstructs Joe’s movement and ‘.’ being a square he can move to. For Joe to repair an

appliance, he needs to move to the position where the appliance is located. Joe can only move

up, down, left, or right.

Output

Output the shortest time in which Joe can fix all 4 appliances. It takes one second for Joe to take

a step from one square in the floorplan to another, and it takes Joe 10 seconds to repair an

appliance.

Example Input File
2

5

#M.J#

#..W#

#D.A#

9

#########

#J.....M#

####W####

#....#A.#

#.#####.#

#.#D....#

#.#####.#

#.......#

#########

Example Output to Screen
46 seconds

76 seconds

 16

13. DandD2

Input File: dandd2.dat

You are playing Dungeons and Dragons, a role-playing game (RPG), you are in a dungeon that is

a maze. You want to find all exits reachable from your starting point without running into

enemies (orcs, trolls, or even dragons).

The maze is an NxN matrix. The letter “X” represents walls and “.” represents hallways. “O” is

an orc, “T” is a troll, and “D” is the dragon. There may be more than one exit, so find ALL

possible exits. Note that you only need to list all unique reachable exits, not the paths to the exits.

While finding the way out, you may move up, down, left or right to next potential location as

specified in the matrix. You cannot move diagonally.

Input
The first line has the size of the maze (N). The next N lines contain the maze (a NxN grid of

characters). The next line contains the number of data sets (Y). Each subsequent line contains

two integers, the coordinates of the starting point, row then column (R and C), the indices of the

matrix 0 to (N-1). Each starting position will be inside the maze, not on the edge (all

rows/columns greater than 0 and less than N).

Output
For each data set output either “trapped” or the exit coordinates. If multiple exits are possible,

print them out in any order, each exit separated by a comma.

Constraints:

10 <= N<= 30

Y < =10

(Continued on next page…)

 17

(Problem 13 continued)

Example Input file
20

X.XXXXXXXXXXXXXXX.XX

X.XXXXX......T..X.XX

X.XXXXX.XXX.XXX..D.X

X.XXXXX.XXX.XXX.XXXX

X.XXXXXTXXX.XXX.X...

X.XXXXX.XXX.....X.XX

X.......XXX.XXX.X.XX

XXXXXXXXXXX.XXX...XX

XXXXXXXXXXX.XXX.XXXX

X......OXXX.XXXOXXXX

X.XXXXX.XXX.XXX.XXXX

X.X..XX.........XXXX

X.XX.XX.X.XX.XXXXXXX

X.XX.XX.X.XX.XX.....

X....XX.X.XX.XX.XXXX

XXXXXXX.X.XX.XX.X...

.T......X.XX.O....XX

XXX.XXX.X.XXXXXXXXXX

XXX.XXX.............

XXX.XXXXXXXXXXXXXXXX

4

6 1

11 3

14 12

3 11

Example Output to Screen
0 1

trapped

18 19, 19 3, 4 19

18 19, 19 3, 4 19

